스토리

나노기공내 금속이온의 전기화학 반응 경로 규명


 

공과대학 신소재공학부 김영근 교수 연구팀은 100~200nm 크기의 나노 기공 내에 존재하는 금속 이온들이 외부 전기장 세기에 따라 다른 반응 경로는 가지는 것을 세계 최초로 규명했다.

 

첫 번째로 연구진이 주목한 부분은 전구체 용액에 사용된 첨가제의 역할이었다. 첨가제 중 하나인 바나딜이온(VO2+)은 산성 용액 내에서 약한 양전하를 띄고 있는 부도체인 산화알루미늄 표면을 매우 강하게 양전하로 충전(charging) 시킬 수 있었다. 따라서 부도체 표면은 전극을 통해 공급된 전자들에게 있어서 전극의 표면 뿐 아니라 새롭게 흐를 수 있는 추가적인 통로로 사용될 수 있었다.

두 번째로 환원제로 사용되는 아스코르브산(Ascorbic acid)이 적당량 첨가되게 되면, 아스코르브산은 전구체 금속이온보다는 바나딜 이온과 우선적으로 반응했다. 이러한 환원반응은 산화알루미늄 표면의 전하를 부분적으로 가리는(screening) 것으로 드러났다. 이 결과는 전구체 용액 내의 금속이온의 환원을 적절히 방해함으로써 일차입자(primary particle)들의 성장에 관여했다.

 

 

또한 반응과정에서 바나딜아스콜베이트(Vanadyl ascorbate)라는 부산물을 형성시키는 것이 발견됐다. 바나딜아스콜베이트는 합성된 일차입자들을 그 형상에 따라서 나선형 구조로 연결시켜주는 역할을 했다. 이 때 외부 전기장의 세기를 조절하여 연결 강도 조절이 가능하다는 것이 확인됐다. 결과적으로 연구진은 코발트, 철, 니켈, 구리 및 그 합금 등의 금속이온들을 같은 방법으로 나노코일의 형태로 합성하는데 성공하여 다양한 금속에 동일하게 적용될 수 있음을 증명했다.

연구책임자 김영근 교수는 “전기도금법은 수용액 기반의 전구체 용액을 사용하여 매우 경제적, 친환경적이면서도 합성 편의성이 높다는 큰 장점을 가지고도 실험 방법적 한계로 인해 단순한 나노구조체 제조에 머물러 있던 기술이었다. 하지만 본 연구 결과는 기존의 고정관념을 깨뜨려 결정화 메커니즘을 새롭게 제시하여 나노구조체의 미세구조 및 형상을 모두 제어할 수 있다는 것을 밝혀냈다. 최근 나노코일과 같은 복잡한 나노구조의 수요가 다양한 분야에서 요구되고 있는 상황 속에서, 단순 합성 조건 조절만으로 매우 손쉽게 대량 생산이 가능해진 만큼 동 분야 뿐 아니라 다양한 학제 간 연구의 새 지평을 열 수 있을 것이라 기대된다.”며 연구의 의의를 설명했다.

댓글 0
수정/삭제 시 이용합니다.
 48474917
avatar

고려대학교(서울)

담당자
연락처
이메일
주소지
고려대학교(서울)
010-8347-0514
서울특별시 성북구 안암동5가

기관의 인기 스토리

목록보기